Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization

After successful payment for your eBook you’ll receive automatically a DOWNLOAD LINK for this product.

If you don’t receive the DOWNLOAD LINK after 5 minutes, please contact us at web[at]dticorp.com and we’ll send you an alternate DOWNLOAD LINK ASAP.


Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization, ISBN-13: 978-1496033192

[PDF eBook eTextbook]


  • 74 pages
  • Publisher: National Institute of Standards and Technology
  • Authors: David Yashar, Sunil Lee
  • Language: English
  • ISBN-10: 1496033191
  • ISBN-13: 978-1496033192


This study demonstrates the performance improvement of an air-to-air roof top unit (RTU) achieved by optimizing an evaporator’s refrigerant circuitry using evolutionary algorithms. The subject of this study is a unit with a cooling capacity of 7.5 Tons (26.4 kW). The RTU employs two separate refrigerant cycles having separate compressors, condensers, and thermostatic expansion valves (TXV) but using a single evaporator slab in which two separate refrigerant circuits are implemented. We modified the RTU by replacing the refrigerant-to-air condensers with water cooled brazed plate heat exchangers in order to facilitate testing. Performance tests were conducted in a conditioned environmental chamber in line with AHRI standard 340/360; in order to accomplish this, we maintained the liquid line saturation pressure and subcooling from the manufacturer’s test data by adjusting the condenser water flow rate and temperature. We also measured the in-situ air velocity profile using Particle Image Velocimetry (PIV), a non-intrusive, laser-based technique. The measurements showed that the range of air velocities passing through the heat exchanger varied from 0.5 ms-1 to 3.0 ms-1, with the integrated average of the measurements being 1.75 ms-1. The PIV data was used to generate a map of the air flow distribution through the heat exchanger, which served as the basis for refrigerant circuitry optimization. We simulated the performance of the original evaporator using the measured air velocity distribution and NIST’s heat exchanger model, EVAP-COND, and were able to tune our computational model to exactly match the laboratory measurements. We then used the measured air velocity distribution with NIST’s evolutionary algorithm optimization module, Intelligent System for Heat Exchanger Design (ISHED), to redesign the evaporator circuitry. The optimization process resulted in a design with a simulated capacity nearly 8 % higher than the original design.

What makes us different?

• Instant Download

• Always Competitive Pricing

• 100% Privacy

• FREE Sample Available

• 24-7 LIVE Customer Support


There are no reviews yet.

Be the first to review “Improving the Performance of a Roof Top Air-Conditioning Unit by Refrigerant Circuitry Optimization”

Your email address will not be published.